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A Low-Power Current Mode Fuzzy-ART Cell

Teresa Serrano-Gotarredona and Bernabé Linares-Barranco

Abstract—This paper presents a very large scale integration (VLSI)
implementation of a low-power current-mode fuzzy-adaptive resonance
theory (ART) cell. The cell is based on a compact new current source
multibit memory cell with online learning capability. A small prototype
of the designed cell and its peripheral block has been fabricated in the
AustriaMicroSystems (AMS)-0.35-�m technology. The cell occupies a total
area of 44� 34 �m and consumes a maximum current of 22 nA.

Index Terms—Adaptive resonance theory (ART), hardware implementa-
tions, low power.

I. INTRODUCTION

Adaptive resonance theory (ART) is a well-established neural net-
work framework developed by Grossberg et al. at the University of
Boston, Boston, MA [1]–[3]. The ART algorithms are neural catego-
rizers that share some interesting properties. One of these properties
is the online learning, that is, each time a new input exemplar is pre-
sented to the system, the system knowledge is updated online to incor-
porate that knowledge; the system learns while it performs. Another
interesting property is that the system maintains a generalization ca-
pability which is controlled by a tunable vigilance subsystem. There
is a vigilance parameter that tunes the coarness of the established cat-
egories. Setting the vigilance parameter to a low value increases the
system generalization capability, thus the system tends to form coarser
categories. Setting the vigilance parameter to a high value decreases
the system generalization, and it tends to form finer categories, thus
increasing the number of categories formed for the same set of input
data.

In the past, some real-time hardware implementations for the ART-1
[4] and adaptive resonance theory map (ARTMAP) [5] algorithms were
reported, that for the first time included their complete functionality.

The fuzzy-ART algorithm is a neural categorizer which self-or-
ganizes recognition codes in response to sequences of analog input
patterns. In recent years, a wide variety of applications of the
fuzzy-ART algorithm has appeared in the literature [6]–[9]. In these
applications, the algorithm is implemented in software. However, to
include these systems in a portable application, the availability of a
dedicated compact low-power consumption hardware would be desir-
able. Several hardware implementations of fuzzy-ART networks have
been reported [10]–[12]. In [10], a very large scale integration (VLSI)
implementation of a modified version of the fuzzy-ART algorithm
is presented. The hardware is simplified by modifying the definition
of similarity between input and exemplars or “choice function.” The
implementations presented in [10] and [12] store the category weights
in analog mode. Thus, weights suffer from decay along time. A re-
freshing mechanism is implemented in [10]. In [12], the learning rule
is modified to compensate for this decay. That modification forces a
continuous presentation of input exemplars to prevent the system from
forgetting the stored knowledge. The implementation presented in
[11] is a fully digital one. Thus, it consumes a large area. To overcome
this problem a pipelined multichip architecture is proposed in [11].
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In this paper, we present a mixed-mode VLSI implementation of the
fuzzy-ART cell. The weights are stored as 4-b digital words. However,
the computation is done in analog current mode. The cell is able to
operate with currents in the order of tenths of nanoamperes, what
makes it particularly suitable for applications requiring low power.
Also, such low-power consumption per cell, allows to assemble a
single-chip fuzzy-ART network with extremely large number of
cells while keeping system power consumption at low levels. The
fast learning rule of the fuzzy-ART algorithm is implemented inside
the cell. This cell is a critical component and first step towards the
development of a full fuzzy-ART microchip. In a 1-cm2 microchip die
area, it would be possible to fit an array of 220 � 280 fuzzy-ART cells
consuming a total power below 4.45 mW.

This paper is structured as follows. A brief description of the
fuzzy-ART algorithm is provided in Section II. The description of the
implemented fuzzy-ART cell is detailed in Section III. Experimental
results are provided in Section IV. Finally, in Section V, some conclu-
sions are drawn.

II. FUZZY-ART ALGORITHM

The fuzzy-ART neural network [3] is a clustering self organizing
neural network for analog input patterns. Fig. 1(a) represents the archi-
tecture of a fuzzy-ART network. The network is composed of an atten-
tional subsystem and an orienting or vigilance subsystem. The atten-
tional subsystem is composed of two layers. LayerF1 is the input layer.
Input patterns b = (b1; b2; . . . ; bN) composed of N analog values are
presented to the system. F2 is the category layer. The system catego-
rizes each input pattern as belonging to one of the [y1; y2; . . . ; yM ]
categories. The system stores a weight matrix fzijg of analog values
that represents the categories learned by the system. Each category yj

is represented by the weight vector zj composed of N analog values.
The algorithmic flow diagram of the fuzzy-ART operation is de-

picted in Fig. 1(b). Initially, all the interconnection weights zij are set
to their maximum analog value “MAX.”

When an analog input vector b = (b1; b2; . . . ; bN) is applied to
the system, each F1 layer cell receives an analog input component
bi 2 [0;MAX]. Then, eachF2 category computes its “choice function”
Tj , which is a measurement of the similarity between the analog input
pattern b and the analog weight template zj = (z1j ; z2j ; . . . ; zNj)
stored in category j

Tj =
jb ^ zj j

� + jzj j
(1)

where ^ is the fuzzy MIN operator defined by (XXX ^ YYY )i =
min(Xi; Yi), jXXXj is the l1 norm jXXXj = N

i=1
jXij, and � is a positive

parameter called “choice parameter.”
Layer F2 is a winner-takes-all (WTA) competition network [13].

Each jth F2 cell gives an output yj which is “1” if that cell is receiving
the largest Tj input and “0” otherwise. That is

yJ = 1; if TJ = max(Tj)

yj 6=J = 0; otherwise.
(2)

This way, the F2 layer selects the category J whose stored pattern zJ
most closely resembles input pattern b according to the similarity cri-
terion defined by (1). The original fuzzy-ART algorithm [3] states that
if more than one Tj is maximal, the category j with the smallest index
is chosen. However, as will be discussed in Section III, in the context of
the proposed hardware, if more than one Tj is maximal a unique winner
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Fig. 1. (a) Topological structure of the fuzzy-ART architecture. (b) Flow diagram of the fuzzy-ART algorithm.

is randomly selected. These different ways of resolving “ties” may re-
sult in some cases where the hardware system produce slightly different
final categories than the theoretical fuzzy-ART algorithm for the same
set of presentations of input patterns. However, this difference does not
affect the functional objectives of the neural network categorizer.

For the winning category J , the vigilance subsystem checks the con-
dition �jbj � jb ^ zJ j, where � 2 [0; 1] is the so called vigilance
parameter. If the condition is not satisfied, category J is disregarded
by forcing TJ = 0. Layer F2 will again select the category with max-
imum Tj , and the vigilance criterion will be checked again. This search
continues until a winning category is selected that fulfills the vigilance
criterion.

When a category J meeting the vigilance criterion is activated, its
weights zJ are updated according to the learning rule zJ (new) = b ^
zJ (old). This learning rule is known as the fast-learning mode of the
fuzzy-ART algorithm [3].

III. FUZZY-ART CELL DESCRIPTION

A fuzzy-ART cell has to perform the following operations:
1) store an analog weight zij , which must be initially reset to its

maximum analog value “MAX;”
2) compute the componentwise fuzzy-min operation between the

analog stored value zij and the analog input component bi; this
analog minimum value will be used in the computation of the
choice function Tj and in the evaluation of similarity by the
vigilance subsystem;

3) implement the learning rule; when a category J is selected (yJ =
1) that fulfills the vigilance criterion, all cells in the selected row
must update their stored weight according to the rule zij(new) =
min(bi; zij(old)).

We have fabricated a cell prototype together with a peripheral cell, to
be shared by all cells in the same column. Fig. 2 shows the schematic of
the fabricated small test prototype. It includes an isolated fuzzy-ART
cell connected to a “bias column cell,” or peripheral cell, which in a
large system would be common to all the cells in the same column. In
hardware cell arrays implementations, it is of primary importance to

Fig. 2. Block diagram of the connections between the fuzzy-ART cell and the
“bias column block.”

simplify and compact the array cells as much as possible. Peripheral
cells can be more complex since they do not contribute as critically to
overall chip area. Peripheral cells will contribute to some of the cell
operations, like biasing, data loading, and handling, etc.
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Fig. 3. Schematic of the “bias column” block. (a) Current splitter generating the input current I to be reproduced in all the cells located in the same column.
(b) Current splitter generating five binary weighted currents to be reproduced in all the cells located in the same column. (c) Schematic of the PMOS current
splitter. (d) Schematic of the amplifiers.

A system implementing the fuzzy-ART operation would contain a
two-dimensional (2-D) matrix of fuzzy-ART cells. Each column of
the fuzzy-ART cells array would correspond to a component bi of the
input vector b = (b1; b2; . . . ; bN ). Each row of the fuzzy-ART cells
array would correspond to one F2 category node. Each row delivers
two output currents: One current representing the analog l1-norm of
the weight vector jzj j, and a second current representing the l1-norm
of the fuzzy-min vector jb^ zj j. These currents would be delivered to
a “peripheral row cell” for the computation of the Tj values that would
compete in a WTA circuit. The peripheral row cells and the WTA net-
work have not been implemented in the present prototype. However,
several circuit topologies for these circuits have already been proposed
in the literature [13], [18]–[20]. The use of an analog WTA circuit [13]
to select the maximum Tj current guarantees that if its gain is suffi-
ciently high a unique winner is always selected. Even in the case that
several Tj currents are nominally identical (which is, for example, the
case whenever a new uncommitted node is selected as a winner) the
mismatches between the Tj currents would bias the WTA network to
select a unique winner.

A. Bias Column Peripheral Cell

The bias column peripheral cell is formed by the blocks shown
in Fig. 3(a) and (b). It consists basically of two p-type channel
metal–oxide–semiconductor (PMOS) current splitters. Each PMOS
current splitter [see Fig. 3(c)] [14], [15] receives a bias current equal to
Ign and delivers four output currents. The first output current is just a
replica of the bias current Ign. The output currents of the next branches
are just the result of dividing by two the current of the immediately
preceding branch [15].

The output currents of the first current splitter [see Fig. 3(a)] are dig-
itally combined using the 4-b digital word bih0 : 3i. Thus, a weighted
current Ib = Ign

3

k=0
bi(k)=2

k is generated. This current goes to
the input of a source-driven active current mirror [16]. The input branch

of the current mirror is formed by transistors Mb and Mc, and the feed-
back amplifier. Transistor Mc acts as a cascode transistor. The gate of
the mirroring transistor Mb is set to a fixed bias voltage VGN , while
its source is driven by the feedback amplifier. The input of this current
mirror presents low input impedance (as input voltage is kept clamped
to Vref ). For low currents, it has better stability properties than the tra-
ditional active input current mirror. Delivering appropriately voltage
Vsn2 to all the fuzzy-ART array cells in the same column, the weighted
current Ib = biIgn can be replicated in all the fuzzy-ART array cells
located in the same column. In fact, the output branch of the amplifier
[see Fig. 3(d)] is replicated in each fuzzy-ART array cell of the same
column to scale the output current of the amplifier with the number of
cells.

The second current splitter [Fig. 3(b)] generates four binary
weighted currents [Ign; Ign=2; Ign=4; Ign=8], that go, respectively, to
the input of four source-driven active current mirrors, generating the
bias voltages Vsn1h0 : 3i. Delivering appropriately these four voltages
to all the cells in the same column, the binary weighted currents can
be replicated in every cell. In this case, the four output branches of
the amplifiers are also replicated in each fuzzy-ART array cell of the
same column.

The “bias column” cell also delivers the digital control word bih0 :
3i to all the fuzzy-ART array cells located in the same column. The
input values bih0 : 3i are loaded serially through a shift register, not
shown here, located in the “bias column cells.”

B. Fuzzy-ART Array Cell

Fig. 4(a) shows the schematic of the fuzzy-ART array cell. Each
cell contains four cells named “bitcell” [whose schematic is shown
in Fig. 4(c)], a “learn_ctr” cell [with detailed schematic shown in
Fig. 4(b)], and some circuitry for the computation of the minimum.

Each “bitcell” cell stores a bit zij(k) of the digitally stored weight
zijh0 : 3i in a current source flip-flop. Fig. 5(a) illustrates the basic
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Fig. 4. Schematic of the fuzzy-ART cell. (a) Complete schematic. (b) Schematic of the box labeled learn_ctr in (a). (c) Schematic of the box labeled bitcell in (a).

concept of the current source flip-flop circuit which is based on a full
MOS version of a MOS/bipolar circuit reported previously [17]. Two
current sources of equal value Ign are connected with two PMOS tran-
sistors M+ and M

�

in a flip-flop configuration. The sources of the two
PMOS transistors are connected to two lines tied to a fixed voltage Vs
by peripheral row-wise voltage sources. The currents injected into these
lines change depending on the state of the flip-flop. If z+ij = 1(z�ij =
0), transistor M+ is ON, M

�

is OFF, and the circuit injects a current
Ign into row line Z+j , while no current is injected into row line Z�j .
Conversely, if z+ij = 0 (z�ij = 1), transistor M+ is OFF, M

�

is ON, and
the circuit injects current Ign into line Z�j , while no current is injected
into lineZ+j . This current source flip-flop is inspired by the flip-flop re-
ported in [18], but with added biasing current sources. As will be shown
later, the addition of the current sources allows appropriate control and
weighting of the delivered currents.

Fig. 5(b) shows a group of n current source flip-flops biased with
binary weighted currents. This circuit forms a current source multibit

memory cell. In this case, the current injected into lines Z+j and Z�j
would be

I Z+j = Ign

n�1

k=0

z+ij(k)
1

2k
= Ignz

+

ij

I Z�j = Ign

n�1

k=0

z�ij(k)
1

2k
= Ignz

�

ij (3)

where z+ij 2 [0; 2� (1=2n�1)] and z�ij 2 [0; 2� (1=2n�1)], with the
restriction z+ij + z�ij = 2 � (1=2n�1).

Connecting N fuzzy-ART current source memory cells in a row
sharing lines Z+j and Z�j enables the generation of currents

I Z+j =Ign

N

i=1

z+ij=Ignjzj j

I Z�j =Ign

N

i=1

z�ij=Ign N 2�
1

2n�1
�jzj j : (4)
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Fig. 5. (a) Conceptual block diagram of the current source flip-flop. (b) N -b current source memory cell.

Fig. 6. Measured current I as a function of the 4-b input word b .

This way, the jzj j currents required for the computation of the choice
functions Tj in (1) are generated for each row.

Fig. 4(a) illustrates the implementation of our 4-b current source
memory cell. Four bitcells are connected inside each fuzzy-ART array
cell. Each bitcell contains a current source flip-flop composed of tran-
sistors M+ and M

�

biased by current sources Mb and Mb [see
Fig. 4(c)]. The four current source flip-flops are connected sharing
nodes Z+

j and Z�j , which are also to be shared by all the fuzzy-ART
cells in the same row.

Transistors Mb , Mb , and Mb in Fig. 4(c) replicate the binary
weighted current Ign=2k generated in the “column bias” cells [see
Fig. 3(b)], as they form an output branch of the source driven current
mirror with their gate voltage clamped to the fixed global voltage VGN

TABLE I
PERFORMANCE COMPARISON OF REPORTED FUZZY-ART IMPLEMENTATIONS

and their sources are connected to nodes Vsn1hki. Transistors M5 and
M6 in Fig. 4(c) form a replica of the output branch of the amplifier in
Fig. 3(d).

As can be observed in Fig. 4(c), the current flowing through branch
z+ij(k) is also replicated by transistors Mb and Mc flowing out
through pin zlocal. Currents flowing through zlocal are summed in
a common node inside each fuzzy-ART cell [see Fig. 4(a)]. Thus,
a current Iz = Ign

3

k=0
z+ij(k)(1=2

k) = Ignzij is generated
locally. This current is going to be used in the computation of the
componentwise fuzzy-min operation that will be described later.

Transistors M1�M4 in Fig. 4(c) act as switches and implement the
cell learning. During normal operation mode digital signal lc is low,
so that transistors M2 and M4 are ON, and the two flip-flop branches
are connected to supply voltages at nodes Z+

j and Z�j as explained
previously. When learning is activated for that cell, signal lc goes high,
so that transistors M2 and M4 turn OFF. Then, if input bit bi(k) is high
(b+i (k) = 1; b�i (k) = 0), transistor M1 is ON and transistor M3

is OFF. Therefore, the positive branch remains connected to a positive
supply voltage through node Z+

j , while no current flows through the
negative branch. This way, the bitcell memory is updated, becoming
z+ij(k) = 1 and z�ij(k) = 0. On the contrary, when cell learning is
activated (lc = 1), if input bit bi(k) is low (b+i (k) = 0; b�i (k) = 1),
the bitcell memory is updated to z+ij(k) = 0 and z�ij(k) = 1. As a
result, whenever learn signal lc is activated, the stored bit zij(k) is
updated to the input bit bi(k).
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Fig. 7. (a) Measured analog current I generated in the cell versus the digital stored value z . (b) Error in percentage.

Fig. 8. (a) Measured minimum output current as a function of currents I and I . (b) Computed minimum output current.

TransistorsMb andMc in Fig. 4(a) are a replica of the corresponding
ones in the bias column block in Fig. 3(a). They deliver a copy of cur-
rent Ib = Ign

3

k=0
bi(k)=2

k . Transistors M9 and M10 are a replica
of the output branch of the feedback amplifier in Fig. 3(a).

Transistors M1 � M8 in Fig. 4(a) form a current-mode circuit for
the computation of the minimum [19]. It receives two input currents
Ib = Ign

3

k=0
bi(k)=2

k and Iz = Ign
3

k=0
zij(k)=2

k. The
comparison is controlled by digital signals cmin and cmax, which
must be properly sequenced [19]. These global signals are provided by
an external off-chip controller after the loading of each input pattern.
After comparison, the minimum current min(Iz ; Ib ) flows through
terminal min. If the result of the comparison is Ib < Iz , current
Ib flows through terminal min and voltage at node x goes high after
comparison. If Iz < Ib , current Iz flows through terminal min
after comparison and voltage at node x goes low. Furthermore, current
flowing through terminalmin is summed along the same row to compute
the term jbi ^ zij j to be used in the computation of the choice function
Tj and in the evaluation of similarity by the vigilance subsystem.

The digital logic controlling the activation of the learn signal
is shown in Fig. 4(b). The circuit performs the logic computation
lc = llj(x + lv). Signal llj is generated for each row from the

periphery. It is controlled by the category selection circuit and the
vigilance subsystem. Signal lv is for global reset and is set to “0”
during normal operation. If category j is selected by the system as
the winning category and the vigilance criterion is fulfilled, signal llj
is activated for that row. Then, for every cell on that row, if signal x
is low, meaning that Iz ^ Ibi = Iz , signal lc remains low, thus,
no learning takes place for that (i; j) cell, and the same weight zij
remains stored. On the contrary, if signal x is high, meaning that
Iz ^ Ib = Ib , signal lc goes high, and learning takes place for
that cell, so that the values stored in the flip-flops are updated to
zijh0 : 3i = bih0 : 3i. This way, after learning takes place for a row,
the weights zij are updated to the minimum (zij ; bi), as required by
the learning rule presented in Section II.

Observe in Fig. 4(b) that we have added a global control signal lv.
When signal lv is activated, for the selected row (llj), signal lc goes
high, and the memory cells on that row, are forced to store the input
values applied at that moment. At the initial stage, an all 1’s input vector
b is applied to the system while signal lv is activated, and signal llj is
activated in a row-by-row basis. Thus, initial reset of the weights zij is
performed. This feature is also useful for forcing any initial arbitrary
value at zj .
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Fig. 9. (a) Measured I current after learning. (b) Computed learning rule.

IV. EXPERIMENTAL RESULTS

The described prototype has been fabricated in the AMS 0.35-�m
double-poly triple-metal complementary MOS (CMOS) technology.
The area of the complete cell is 44 � 34 �m2. Thus, a 128 � 128
array could be assembled in a chip with a total area of 16 � 4.8 mm2.

In this section, we present experimental results of the “bias column”
cells and the fuzzy-ART array cell. The currents used in these exper-
iments are in the order of 10 nA what makes the system clearly out-
perform the system reported in [10] in terms of current consumption,
as these currents are 50–100 times lower. This system is comparable
to the system in [12] in terms of current consumption and precision;
however, it achieves long-term weight storage. Compared to the fully
digital system in [11], it consumes both less area and power, although
it is less precise. Table I compares the performance of this implemen-
tation compared with previously reported ones [10]–[12]. As the com-
pared designs have been fabricated in different technologies, in order
to compare the cell area, we have expressed the cell areas in � units.
� is the minimum gate length allowed in the corresponding fabrication
technology.

A. Measurement of “Column Bias” Cells

Fig. 6 depicts the input current Ib generated in the “bias column”
block (see Fig. 3) versus the digital input word bih0 : 3i. The currents
Ib are going to be summed along the row of “bias column” cells, thus
generating a total current Ib = N

i=1
Ib to be used by the vigilance

subsystem to check the similarity criterion between the input and the
different weight templates.

B. Measurement of “Weight Currents”

Fig. 7(a) shows the measured analog current Iz generated in
the cell versus the digital stored weight zijh0 : 3i. Superimposed
in Fig. 7(a), we have represented the best linear fit. In Fig. 7(b), the
error in percentage between the true value and the linear fit has been
represented. The maximum error corresponds to 4.48%.

C. Cell Operation

The cell operation is tested in the following way.
1) A weight value zij is stored in the cell memory.
2) An input word bi is loaded.

3) The fuzzy minimum bi ^ zij is computed through proper se-
quencing of signals cmin and cmax. The resulting minimum cur-
rent Ib ^ Iz is measured through pin min.

4) Learning signal llj is activated.
5) The updated zij is measured.
Fig. 8(a) depicts the current measured through pin min after the

computation of the minimum as a function of 16 generated currents
Ib and of 16 generated weight currents Iz . Current Ib is swept be-
tween 0–9.5 nA, while current Iz changes between 0–12.2 nA. In
Fig. 8(b), we show for comparison the ideal result of the minimum
operation min(Ib ; Iz ) as a function of the same currents. The max-
imum error between measured and ideally computed results is 18%,
which occurs for Ib = 9.3 nA and Iz = 12.3 nA. At this point the
theoretical minimum current is min(Ib ; Iz ) = 9.3 nA; however, the
measured minimum current is 11.4 nA.

Fig. 9(a) plots the Iz current measured after the updating of the
weights Iz (new). In Fig. 9(b), we also show for comparison the com-
puted ideal Iz (new) value, as a function of the initial input currents
Ib and Iz . Maximum error between measured and ideal results is
34%, obtained for Ib = 8.8 nA and Iz = 8.2 nA.

V. CONCLUSION

A low-power fuzzy-ART cell has been designed, fabricated, and
tested. The cell is designed to operate in weak inversion with currents
as low as one nanoampere. Maximum cell current consumption is
22 nA. This low current consumption makes this cell specially suitable
to implement fuzzy-ART systems in portable applications. The cell
has been implemented in a CMOS 0.35-�m technology and occupies
an area of 44 � 34 �m2. The cell was designed to store weights with
4-b precision. This cell is intended to be used in a complete array for
a fully functional fuzzy-ART microchip system which is now under
development.
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